Einstein's broader theory of relativity told us more about how the universe works and helped to lay the foundation for quantum physics, but it also introduced more confusion into theoretical science. In 1927, this sense that the universe's laws were, in some contexts, flexible, led to a groundbreaking discovery by the German scientist Werner Heisenberg.In postulating his Uncertainty Principle, Heisenberg realized that it was impossible to simultaneously know, with a high level of precision, two properties of a particle. In other words, you can know the position of an electron with a high degree of certainty, but not its momentum and vice versa.Niels Bohr later made a discovery that helps to explain Heisenberg's principle. Bohr found that an electron has the qualities of both a particle and a wave, a concept known as wave-particle duality, which has become a cornerstone of quantum physics. So when we measure an electron's position, we are treating it as a particle at a specific point in space, with an uncertain wavelength. When we measure its momentum, we are treating it as a wave, meaning we can know the amplitude of its wavelength but not its location.
Post Top Ad
Responsive Ads Here
Sunday, June 10, 2018
What is The 'Big Bang Theory'
Subscribe to:
Post Comments (Atom)
Post Bottom Ad
Responsive Ads Here
Author Details
I am Rj and I am a science student.
No comments:
Post a Comment